
PHYSICAL REVIEW E, VOLUME 63, 021101
Multiple current reversal in Brownian ratchets
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We address the problem of stationary transport of overdamped Brownian particles in a one-dimensional
spatially periodic potential composed ofN hills within one period. We show that in a system driven by both
thermal equilibrium fluctuations and symmetric dichotomic fluctuations, a proper manipulation of the barrier
heights and slopes of the potential leads to multiple drift velocity reversal. Under optimal conditions, the drift
velocity as a function of temperature and intensity of dichotomic fluctuations possesses as many asN extrema
of alternating signs. There existN21 values of a critical temperature which separate regimes of opposite
directions of particle transport.
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I. INTRODUCTION

Transport phenomena play a crucial role in a large var
of processes in nature, from physical through biological
social systems. In the past ten years or so, the concep
stochastic transport realized in Brownian ratchets has c
tured the attention of researchers@1#. Ratchets are one ex
ample of simple nonequilibrium model systems which, in t
absence of any bias forces and gradients, can rectify z
mean nonequilibrium fluctuations into unidirectional motio
Various ratchetlike mechanisms have been intensively s
ied, including an analysis of sources of driven~deterministic
and/or random! forces or potentials, statistics of nontherm
fluctuations, conditions for optimal transport, etc.,@2#. The
subject has become attractive for at least two reasons:
possibility of a satisfactory explanation of directed motion
molecular motors which transport macromolecules in b
logical cells @3#, and attempts to construct well-controlle
devices of high resolution for separation of macro-partic
and microparticles like cells, latex spheres, DNA, or prote
@4#. In both cases the magnitude and direction of the d
velocity of particles are important characteristics of tra
port. In this context, the current reversal phenomenon is
of the most interesting aspects of the theory of Brown
ratchets.

In this paper we study a system which exhibits multip
current reversal. We show that the right deformation of sh
of the spatially periodic potential can almost arbitrar
change the qualitative features and properties of the sys
In real systems the shape of the potential is a feature w
can be changed or adjusted. In biological systems, the po
tial is related to the size, shape, and components of prote
which in general are very complicated, and the potentia
reckoned to be highly fine tuned by biological evolutio
Protofilaments, which form a microtubulin, are on
dimensional spatially periodic systems consisting of ana
tubulin andb tubulin, which influence transport of kinesin o
dynein along microtubulins. In separation devices the sh
of the potential can be obtained, e.g., by microlithograp
techniques, and they can be quite complex.

The remainder of this paper is organized as follows.
Sec. II we describe the mathematical model of the ther
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ratchet under study. It is a model with a fluctuating forc
exponentially correlated symmetric two-state Markov noi
This is one of the simplest correlated noises which can
duce transport in periodic structures with broken reflect
symmetry. A Brownian ratchet with this driving was alread
investigated in the literature@5–8#. In Ref. @6# it was shown
that asymmetric dichotomic noise and a simple piecew
linear potential can produce a current reversal. Its ori
comes from the interplay between the asymmetry of the
riodic potential and the asymmetry of the noise. Here we
not adopt this mechanism: the noise considered is symme
However, potentials are asymmetric and much more com
cated. In Sec. III we construct such potentials, which con
of N hills within one period. For simplicity, we have consid
ered piecewise linear functions. In Sec. IV we show that
ratchet system exhibits a multiple current reversal which
generated by the potentials constructed in Sec. III.

II. MODEL

We analyze the stochastic dynamics of overdamped
noninteracting Brownian particles moving in a on
dimensional spatially periodic potentialV̂( x̂)5V̂( x̂1L) of
period L and of the maximal barrier heightDV̂5V̂max

2V̂min , and driven by two random forces. The Langev
equation of motion in dimensionless form is~the scaling and
dimensionless variables were discussed in detail in Ref.@9#!

ẋ5 f ~x!1G~ t !1j~ t !, f ~x!52dV~x!/dx, ~1!

wherex5 x̂/L is a dimensionless position of the Brownia
particle, andV(x)5V(x11) is a rescaled periodic potentia
with a unit period and a unit maximal barrier height. The
random forceG(t) represents equilibrium thermal fluctua
tions. It is Gaussian white noise of zero average,^G(t)&50,
and the correlation function̂G(t)G(s)&52Dd(t2s), where
D5kBT/DV̂ is its intensity,kB stands for the Boltzmann
constant, andT is the temperature of the system. The rando
force j(t) represents nonequilibrium fluctuations, and
modeled by asymmetricdichotomic Markovian stochastic
process,
©2001 The American Physical Society01-1
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j~ t !5$2a,a%, a.0,
~2!

P~2a→a!5P~a→2a!5m,

whereP(2a→a) is a probability per unit time of the jump
from state2a to statea. This process is of zero averag
^j(t)&50, and exponentially correlated,

^j~ t !j~s!&5a2e2ut2su/t, ~3!

wheret51/2m is the correlation time of the processj(t).
Thus, it is characterized by two parameters: its amplituda
~or equivalently the variancêj2(t)&5a2) and the correla-
tion time t.

Master equations corresponding to Eq.~1! have the forms
@10#

]P1~x,t !

]t
52

]

]x
@ f ~x!1a#P1~x,t !1D

]2

]x2
P1~x,t !

2mP1~x,t !1mP2~x,t !, ~4!

]P2~x,t !

]t
52

]

]x
@ f ~x!2a#P2~x,t !1D

]2

]x2
P2~x,t !

1mP1~x,t !2mP2~x,t !, ~5!

where the probability densities are

P1~x,t ![p~x,a,t !, P2~x,t ![p~x,2a,t !. ~6!

From Eqs.~4! and ~5! it follows that the probability density

P~x,t !5P1~x,t !1P2~x,t ! ~7!

of the processx(t) alone obeys the continuity equation

]P~x,t !

]t
52

]J~x,t !

]x
, ~8!

FIG. 1. The rescaled sawtooth potentials of unit period and
maximal barrier hight within one period withN51, 2, 3, and 4
hills ~top to bottom!. The values of barrier-heights and slopes a
given in Eq.~11!.
02110
where the probability current

J~x,t !5 f ~x!P~x,t !2D
]P~x,t !

]x
1a@P1~x,t !2P2~x,t !#.

~9!

it

FIG. 2. The dimensionless current vs dimensionless intensitD
of thermal fluctuations~or temperature of the system! for potentials
~11! with 1, 2, 3, and 4 hills. Values of the amplitudea of dichoto-
mic fluctuations area51.8 for N51, a54.78 for N52, a510.58
for N53, anda516.7 for N54. The correlation time of dichoto-
mic noise ist51.0.
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This is a fundamental quantity characterizing transport pr
erties of the system. In particular, the averaged drift~dimen-
sionless! velocityv(t) of the particles is given by the relatio

v~ t !5^ẋ&5E
0

1

f ~x!P~x,t !dx5E
0

1

J~x,t !dx, ~10!

and the latter follows from the former by use of Eq.~9!.

III. POTENTIALS

If nonequilibrium fluctuationsj(t) are symmetric@11#,
transport and directed motion of particles is possible o
when the spatial reflection symmetry of the potentialV(x) is
broken. IfV(x) is a simple piecewise linear function havin
one maximum within a period~a generic ratchet potentia
used in literature!, the current reversal phenomenon can o
cur only when fluctuations are asymmetric@11#. In the case
of symmetric fluctuationsj(t), this phenomenon can occur
the shape of the potential is deformed in a special way@12#.
We show this by analyzing a case of a potential which
composed ofN hills of various heights and shapes. For t
sake of simplicity, piecewise linear potentials on the u
interval @0,1# will be considered, assuming that their min
mal values are zero andV(0)5V(1)50. We define a saw-
tooth potential by fixing two independent sets of numbers:
maximal valuesV5@V1 ,V2 , . . . ,VN# and values of the
slope ~force! f 5@ f 1

2 , f 1
1 , f 2

2 , f 2
1 , . . . ,f N

2 , f N
1#. Hence the

triple @Vi , f i
2 , f i

1# characterizes thei th tooth of the potential.
We expect that, by appropriate manipulation of its heig
and slopes, theN-sawtooth potential gives rise to the mu
tiple current reversal. This conjecture follows from two o
servations. First, ifj(t)50 the motion of a Brownian par
ticle in a potential with hills of various heights consists
subsequent barrier crossings in one of three regimes:

~i! Vi!D; the motion of the particle is not essential
disturbed by the barrier, and is of diffusive type.

~ii ! Vi.D; the motion of the particle is of activation type
~iii ! Vi@D; the long-distance motion of the particle is n

possible without driving force~here by dichotomic fluctua
tions!.

Second, at zero temperature the barrier crossing indu
by dichotomic noise only depends on the relation betw
the slopes and the amplitudea of fluctuationsj(t). Taking
the above into account, we construct potentials fulfilling t
following conditions:

~a! Potentials have increasing barriers:Vi,Vi 11.
~b! The smaller barrier has steeper slopes than slope

all higher barriers, i.e., ifVi,Vk then u f i
2u,u f i

1u.u f k
2u,u f k

1u.
~c! Barriers have alternating asymmetry, i.e., ifu f i

2u
.u f i

1u ~or vice versa! then u f i 11
2 u,u f i 11

1 u ~or vice versa!.
As an example, we analyze four cases of the follow

potentials~see Fig. 1!

N51: V5@1#, f 5@3,21.5#, ~11!

N52: V5@0.5,1#, f 5@6.83,210.25,3.42,21.71#,

N53: V5@0.25,0.5,1#,
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FIG. 3. The dimensionless current vs dimensionless intens
of dichotomic and thermal fluctuations for the potentials~11! with
1, 2, 3, and 4 hills. Dashed and solid lines denote negative
positive values of the current, respectively. The correlation time
dichotomic noise ist51.0. The scale ofD is logarithmic, and the
scale ofa is linear.
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f 5@17.65,214.12,7.06,210.59,3.53,21.77#

N54: V5@0.125,0.25,0.5,1#,

f 5@21.41,224.98,17.84,214.27,7.14,210.70,3.57,21.78#.

IV. RESULTS

We consider a stationary regime in which the probabi
densityP(x)5 limt→` P(x,t), and the probability currentJ
5 limt→` J(x,t)5const. The stationary mean~dimension-
less! velocity v of the particle is equivalent to the currentJ:

v5^ẋ&5E
0

1

f ~x!P~x!dx5J. ~12!

The stationary probability current can be obtained from E
~9!, and takes the form

J5 f ~x!P~x!2DP8~x!1a@P1~x!2P2~x!#, ~13!

where the prime denotes a derivative with respect tox.
For an arbitrary potential, the stationary solution of t

system of equations~4! and ~5! is not known, with the ex-
ception of some limiting cases. For a piecewise linear pot
tial this system can be solved analytically. The method
solution was presented in Ref.@10# for the simplest piece-
wise linear potential withN51 hill. Though this potential is
very simple, the calculations require an algebra manipula
package, and the final analytical results have to be inve
gated numerically due to their complexity, illegibility, an
length. Here, in order to obtain reliable results, we ha
decided to obtain numerically a stationary soluti
$P1(x),P2(x)% of the system of equations~4! and ~5!. For
this purpose we have adapted the finite elements met
Next, the stationary currentJ is obtained from relation~13!.
In practice, this allows one to obtain the solution in t
shorter CPU time and of the same accuracy as the analy
approach. Moreover, it is much easier to implement t
method for an arbitrary form of the potentialV(x).

A general note concerns the dependence of the curren
the correlation timet of dichotomic noise. In the fast nois
limit, when t→0, the current diminishes:J→0. For smallt
it behaves asJ}ta. The value of the exponenta depends
strongly on the regularity of the potentialV(x). Its value has
been evaluated for a smooth potential@7# as well as for a
piecewise linear potential withN51 hill @8#. For an arbitrary
N, this problem has not been studied. In the slow noise lim
whent→`, the system of equations~4! and ~5! decouples,
and thenJ→J` , where
02110
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J`5@J~a!1J~2a!#/2 ~14!

and

J~a!5D
12e2a/D

E
0

1

e2(V(x)2ax)/DE
x

x11

e(V(y)2ay)/Ddydx

.

~15!

From a numerical analysis it follows that for anyN the cur-
rent J(t) as a function of the correlation timet can change
sign at most once, i.e., there is such a value oft5t i that
J(t i)50. Belowt i and abovet i particles are transported i
opposite directions. On the other hand, for fixedN there
exists such a domain of values of the amplitudea and cor-
relation timet of fluctuationsj(t) that the currentJ(D) as a
function of the thermal noise intensityD ~i.e., temperature!
possessesN extrema of alternating signs. As a consequen
J(D)50 for N21 values of D5D1 , D2 , . . . ,DN21.0
~see Fig. 2!. In each, two adjacent domains separated byDi
particles move in opposite directions. We have observed
if N becomes greater and greater then extrema ofJ for higher
temperatures are smaller and smaller. Of course, this is
true for potentials constructed in such a way as presente
Sec. III. In Fig. 3 we present a contourplot of the current
a function of the thermal-noise intensityD and the amplitude
a of the dichotomic noise. One can see that, for fixedD and
a correlation timet, a multiple current reversal occurs whe
a is varied.

The multiple current reversal can be detected for sl
fluctuations as well. Indeed, from numerical analysis of f
mula ~14!, we have qualitatively obtained the same behav
of the current as presented in Fig. 2. We have investiga
the dependence of the original unscaled~dimensional! mean
velocity ^v&5(DV̂/gL)J of particles on their linear sizeR,
which, via the Stokes formula, is hidden in the friction coe
ficient g}R. The detailed procedure was described in R
@10#. We have noted that the mean velocity can change
sign only once whenR is changed monotonically and, unfo
tunately, multiple velocity reversal is not possible in th
case.

In conclusion, we have shown that in a system driven
symmetric fluctuations and noise, the phenomenon of m
tiple current reversal can be precisely controlled by
proper deformation of a spatially periodic potential. Th
phenomenon occurs upon variation of not all but only
lected basic parameters of the model~here by the thermal-
noise intensityD and the amplitude of the nonthermal noi
a). Multiple current reversal can appear in other syste
@13,14#. However, the mechanism is radically different th
that studied in this paper.
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